Volatile constituents of *Thalassia testudinum* Banks ex König Leaves

J. A. Pino*

Instituto de Investigaciones para la Industria Alimenticia, Carretera al Guatao km 3½, La Habana 19200, Cuba

E. L. Regalado

Centro de Bioproductos Marinos, Loma y 37, La Habana 10400, Cuba

Abstract

The volatile constituents from the sea grass *Thalassia testudinum* was analyzed by GC and GC/MS. One-hundred-forty-two constituents were identified which constituted more than 95% of the oil composition, all of them reported for the first time in this species. The most prominent volatile compound was ethyl (Z)-1-propenyl disulfide (31% of the total composition).

Key Word Index

Turtle grass, *Thalassia testudinum*, Hydrocharitaceae, essential oil composition, ethyl (Z)-1-propenyl disulfide.

*Address for correspondence: jpino@iiia.edu.cu

Rec: April 2008 Acc: August 2008

1041-2905/10/0005-0421\$14.00/0-© 2010 Allured Business Media

Pino and Regalado

Table I. Volatile compounds in Thalassia testudinum leaves

Compound	RI	%	Compound	RI	%
3-methylbutanal	653	0.3	linalool	1097	0.7
2-methylbutanal	665	0.4	nonanal	1101	0.3
1-penten-3-ol	683	1.1	isophorone	1121	0.1
1-penten-3-one	686	0.4	trans-pinocarveol	1139	0.1
pentanal	705	0.5	camphor	1145	1.4
2-ethylfuran	707	0.6	(Z)-2-nonenal	1149	t
acetoin	720	t	4-ethylbenzaldehyde	1164	0.4
acetal	730	0.1	borneol	1169	0.4
sopentanol	741	0.1	ethyl benzoate	1172	0.2
E)-3-penten-2-one	745	0.2	2,5-dimethylbenzaldehyde	1175	0.3
dimethyl disulfide	753	0.2	terpinen-4-ol	1175	0.5
E)-2-pentenal	754	0.1	α-terpineol	1189	0.6
1H)-pyrrole	762	0.1		1192	0.0 t
Z)-2-pentenol	774	1.1	methyl salicylate		0.2
3-hexanone	784	t	safranal	1197	
2-hexanone	792	t	dodecane	1200	0.1
		ر 3.4	decanal	1203	0.1
nexanal	802		β-cyclocitral	1223	0.7
ethyl (Z)-1-propenyl disulfide	813	31.0	dimethyl tetrasulfide	1232	0.1
2-methylpyridine	816	t	geraniol	1253	t
2-furfural	835	t	linalyl acetate	1258	t
E)-2-hexenal	855	1.7	bornyl acetate	1289	0.1
Z)-3-hexenol	859	0.5	2-undecanone	1294	0.1
sovaleric acid	885	t	(1H)-indole	1296	0.1
o-xylene	865	0.2	tridecane	1300	t
2,6-dimethypyridine	884	t	trans-carvyl acetate	1340	t
3-heptanone	887	t	α-terpinyl acetate	1349	2.2
nexanol	890	0.4	eugenol	1359	1.4
2-heptanone	892	0.5	α-ylangene	1375	t
Z)-4-heptenal	901	0.3	α-copaene	1377	0.1
neptanal	903	0.8	β-maaliene	1382	0.1
aleric acid	909	t	β-elemene	1390	0.6
E,E)-2,4-hexadienal	910	0.2	2-dodecanone	1396	t
nethyl (Z)-1-propenyl disulfide	922	2.8	tetradecane	1400	0.1
X-pinene	939	0.2	methyl eugenol	1400	0.1
l-decanol	946	0.1	dedecanal	1404	0.9 t
camphene	954	t	-		
nethyl (E)-1-propenyl disulfide	956	2.6	β-caryophyllene	1418	1.9
	959	2.0 t	methyl undecanoate	1427	t
3-ethylpyridine	961	0.4	(E)-α-ionone	1430	0.1
oenzaldehyde			α- <i>trans</i> -bergamotene	1435	t
dimethyl trisulfide	970	0.2	dihydro-β-ionone	1436	0.2
neptanol	971	0.1	(E)-cinnamyl acetate	1446	t
sabinene	975	0.1	geranylacetone	1455	0.4
3-pinene	979	0.2	α -humulene	1455	0.3
I-octen-3-ol	980	0.1	ethyl (E)-cinnamate	1467	0.1
3-octanone	984	0.1	germacrene D	1486	0.2
S-methyl-5-hepten-2-one	986	0.1	(E)-β-ionone	1489	7.2
2-pentylfuran	991	1.1	pentadecane	1500	2.5
e-octanone	993	t	tridecanal	1510	0.3
octanal	998	t	δ -cadinene	1522	t
lecane	1000	t	dihydroactinidiolide	1533	0.5
λ-phellandrene	1002	t	β-calacorene	1545	0.1
E,E)-2,4-heptadienal	1011	0.2	elemicin	1557	t
x-terpinene	1015	0.1	(E)-nerolidol	1564	t
iexanoic acid	1019	0.1	(E)-2-tridecenal	1569	0.2
o-cymene	1025	0.3	spathulenol	1578	0.2
monene	1029	0.5	•	1589	1.1
,8-cineole	1023	3.1	caryophyllene oxide	1600	0.3
2,2,6-trimethylcyclohexanone	1034	0.4	hexadecane		
	1034	0.4	teradecanal	1614	0.5
5-ethyl-2(5H)-furanone			benzophenone	1628	t
penzyl alcohol	1037	t	β-eudesmol	1653	0.1
/-terpinene	1060	0.3	selin-11-en-4-α-ol	1660	0.2
acetophenone	1065	0.3	tetradecanol	1673	0.8
p-tolualdehyde	1068	t	heptadecane	1700	1.2
octanol	1069	t	pentadecanal	1713	1.9
2-pyrrolidinone	1076	0.1	pentadecanol	1773	0.3
2-nonanone	1090	0.1	hexahydrofarnesyl acetone	1846	1.7

Compound	RI	%	Compound	RI	%
pentadecanoic acid	1869	t	hexadecanoic acid	1983	t
hexadecanol	1876	0.6	ethyl hexadecanoate	1992	t
nonadecane	1900	t	geranyl linalool	2006	t
(E,E)-farnesyl acetone	1915	0.3	heneicosane	2100	0.2
methyl hexadecanoate	1922	t	phytol	2112	0.9

Plant Name, Source and Part

Thalassia testudinum Banks *ex* König (Hydrocharitaceae) plants were collected in March 2007 from "La Concha" Beach (22°05'45"N/82°27'15"W) and identified by Areces J.A., Ph.D., Instituto de Oceanología (La Habana). A voucher sample (No. IdO39) has been deposited in the Herbarium of the Cuban National Aquarium.

Leaves were washed with distilled water and air-dried for about three days. The oil was obtained from 100 g of leaves by simultaneous distillation-solvent extraction with 25 mL of diethyl ether for 3 h (previously distilled). The extract was dried over anhydrous sodium sulfate and concentrated with a Kuderna-Danish apparatus to 0.9 mL, and then to 0.2 mL with a gentle stream of nitrogen.

Introduction

Thalassia testudinum is a sea grass, commonly known as turtle grass (1), which plays an important role in marine ecosystems, supplying nursery grounds for many invertebrate and fish species, stabilizing the sediments of near shore coast, etc. (2). This plant is the largest and most robust sea grass in Florida and the Caribbean. The leaves are ribbon-like, are about 1.3 cm wide and up to 35 cm long, and grow in water up to 25 m and salinities as low as 20 ppt. It prefers shallower water up to 10 m and salinities between 25–40 ppt (3).

Previous studies have shown that luteolin 7- β -D-glucopyranosyl-2"-sulfate (thalassiolin A), isolated from *T. testudinum* (collected in the Bahamas coasts) has antibiotic activity against Zoosporic fungi (4). Moreover, a recent study demonstrated that thalassiolin A, chrysoeriol 7- β -D-glucopyranosyl-2"-sulfate (thalassiolin B) and apigenin 7- β -D-glucopyranosyl-2"-sulfate (thalassiolin C), represent a new series of HIV integrase inhibitors (5). A review of the literature reveals that the volatiles of this plant have not been the subject of previous studies.

Process

An HP 6890 GC with a FID, equipped with an HP-5MS fused silica column (30 m x 0.25 mm x 0.25 μ m) was used. The column temperature was programmed as follows: 70°C isothermal for 2 min, 70°C to 230°C at 4°C/min, then held for 10 min. Helium carrier gas was used at a flow rate of 0.9 mL/min. The injector and detector were maintained at 230°C. Sample

injection volume was $0.3 \ \mu$ l with a split ratio of 1:10. Linear retention indices were calculated using n-paraffin standards.

An HP 6890 Series II equipped with a mass selective detector HP-5973N was employed. A same capillary column and temperature program as in the GC-FID technique was used. Mass spectra were recorded in the electron-impact mode at 70 eV by 1.8 scans/s, and the mass range used was m/z 35–400; ion source and connecting parts temperature: 230°C.

Compounds were identified as far as possible from the best match to their mass spectrum in the NBS/Wiley and NIST libraries or in-house FLAVORLIB library, and confirmed in many compounds by their relative retention indices. Whenever possible, retention indices and mass spectra were also compared with those of authentic samples. Mass spectra from the literature were also compared (6). Quantitative analysis was made by the normalization method from the electronic integration of the FID peak areas without the use of correction factors.

The identified compounds in the leaf oil of *T. testudinum* are listed in Table I. One-hundred-forty-two constituents were identified which constitute more than 95% of the composition, all of them reported for the first time in this species. The most prominent volatile compound was ethyl (*Z*)-1-propenyl disulfide (31%).

References

- D.S. Littler and M.S. Littler, Caribbean reef plants. An identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of México. pp 482-483, Offshore Graphics, London, (2000).
- M.J. Durako and J.I. Kunzelman, Photosynthetic characteristics of *Thalassia testudinum* measured in situ by pulse-amplitudemodulated (PAM) fluorometry: methodological and scale-based considerations. *Aquat. Bot.*, 73, 173-185 (2002).
- C.J. Dawes, *Botánica Marina*. Editorial Limusa. México D.F. (1986).
- P.R. Jensen, K.M. Jenkins, D. Porter and W. Fenical, Evidence that a new antibiotic flavone glycoside chemically defends the sea grass *Thalassia testudinum* against Zoosporic fungi. *Appl. Environ. Microb.*, 64, 1490-1496 (1998).
- D.C. Rowley, M.S. Hansen, D. Rhodes, C.A. Sotrifer, H. Ni, J.A. McCammon, F.D. Bushman and W. Fenical, Thalassiolins A-C: New marine-derived inhibitors of HIV cDNA integrase. *Biorgan. Med. Chem.*, **10**, 3619-3625 (2002).
- R.P. Adams, Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured Publishing Corp., Carol Stream, IL. (2001).